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ABSTRACT

Intersecting neuroscience and deep learning has brought benefits and developments to both fields for
several decades, which help to both understand how learning works in the brain, and to achieve the
state-of-the-art performances in different AI benchmarks. Backpropagation (BP) is the most widely
adopted method for the training of artificial neural networks, which, however, is often criticized for its
biological implausibility (e.g., lack of local update rules for the parameters). Therefore, biologically
plausible learning methods (e.g., inference learning (IL)) that rely on predictive coding (a framework
for describing information processing in the brain) are increasingly studied. Recent works prove that
IL can approximate BP up to a certain margin on multilayer perceptrons (MLPs), and asymptotically
on any other complex model, and that zero-divergence inference learning (Z-IL), a variant of IL, is
able to exactly implement BP on MLPs. However, the recent literature shows also that there is no
biologically plausible method yet that can exactly replicate the weight update of BP on complex
models. To fill this gap, in this paper, we generalize (IL and) Z-IL by directly defining them on
computational graphs. To our knowledge, this is the first biologically plausible algorithm that is
shown to be equivalent to BP in the way of updating parameters on any neural network, and it is thus
a great breakthrough for the interdisciplinary research of neuroscience and deep learning.

Keywords Cognitive Science · Deep Learning · Computational Neuroscience

1 Introduction

In recent years, neural networks have achieved amazing results in multiple fields, such as image recognition [18, 27],
natural language processing [53, 13], and game playing [50, 49]. All the models designed to solve these problems share
a common ancestor, multilayer perceptrons (MLPs), which are fully connected neural networks with a feedforward
multilayer structure and a mapping function Rn → Rm. Although MLPs are able to approximate any continuous
function [21] and theoretically can be used for any task, the empirical successes listed above show that more complex
and task-oriented architectures perform significantly better than their fully connected ones. Hence, the last decades
have seen the use of different layer structures, such as recurrent neural networks (RNNs) [19], transformers [53],
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Table 1: Divergence between one-weight update of BP and Z-IL on different models, starting from the same initialization.

Fully Connected Net Convolutional Net Recurrent Net ResNet18 Transformer Net

Divergence: 0 0 0 4.53× 107 7.29× 104

convolutional neural networks (CNNs), and residual neural networks [18]. Albeit diverse architectures may look
completely different, their parameters are all trained using gradient-based methods, creating a need for a general
framework to efficiently compute gradients. Computational graphs, which are decompositions of complex functions in
elementary ones, represent the ideal solution for this task, as they generalize the concept of neural network. In fact,
they allow the use of reverse differentiation to efficiently compute derivatives and hence update the parameters of the
network. In deep learning, this technique is used to quickly propagate the output error through the network, and it is
hence famous under the name of error backpropagation (BP) [43]. While being a milestone of the field, this algorithm
has often been considered biologically implausible, as it does not follow the rules of biological networks in the brain to
update the parameters and propagate information.

A classic model of information processing in the brain is predictive coding (PC), which is used by computational
neuroscientists to describe learning in the brain, and has promising theoretical interpretations, such as the minimization
of free energy [10, 15, 16, 59] and probabilistic models [58]. Originally proposed to solve unsupervised learning tasks,
PC has been found to be successful also in supervised models [58], and its variant, inference learning (IL) [58], has also
been shown to be able to approximate BP up to a certain margin on MLPs, and asymptotically on any other complex
model [34]. Furthermore, a recent work has proved that PC can do exact BP on MLPs, CNNs, and many-to-one RNNs
using a learning algorithm called zero-divergence inference learning (Z-IL) [51, 45]. Z-IL is a biologically plausible
method with local connections and local plasticity, and both its prediction and learning phases minimize the same energy
function, which is an important biological property lacking in classical models. While this exactness result is thrilling
and promising, Z-IL has limited generality, as it has only been shown to hold for MLPs, CNNs, and many-to-one RNNs.
Actually, a recent study shows that there is no work yet to train high-performing deep neural networks on difficult
tasks (e.g., ImageNet classification) using any algorithm other than BP [29]. This shows the existence of a gap in our
understanding of the biological plausibility of BP, which can be summarized as follows: there is an approximation
result (IL), which has been shown to hold for any complex model [58, 34], and an exactness result (Z-IL), only proven
for MLPs, CNNs, and many-to-one RNNs. If the exactness result of Z-IL is extended to any complex model, then this
would allow Z-IL to reach the performance of BP on complicated tasks such as ImageNet, setting a great breakthrough
for the interdisciplinary research of neuroscience and deep learning.

In this work, we close this gap by analyzing the Z-IL algorithm, and generalize the exactness result to every complex
neural network. Particularly, we start from analyzing the Z-IL algorithm on different architectures by performing one
iteration of BP and one iteration of Z-IL on two identically initialized networks, and compared the two weight updates
by computing the Euclidean distance. The numbers reported in Table 1, show that the exactness result holds for CNNs
and many-to-one RNNs, but fails for more complex architectures, such as residual and transformer neural networks. An
analysis of the dynamics of the error propagation of Z-IL shows that the root of the problem is in the structure of the
computational graph: in ResNet, for example, the skip connections design a pattern that does not allow Z-IL to exactly
replicate the weight update of BP.

Consequently, this paper resolves the above problems by the following contributions:

• First, we generalize IL and Z-IL to work for every computational graph, and hence every possible neural
network. Particularly, we propose a variant of Z-IL directly defined on computational graphs, which we prove
to be equivalent to BP in the way of updating parameters on any possible model. This is, to our knowledge, the
first biologically plausible algorithm that can exactly replicate the weight updates of BP on mapping functions
of complex models. This sets an unprecedented state-of-the-art performance for the interdisciplinary research
of neuroscience and deep learning, and can now be considered as efficient alternatives to BP, instead of just
theoretical tools.

• Second, we experimentally analyze the running time of Z-IL, IL, and BP on different popular architectures.
We show that Z-IL is not only equivalent to BP in terms of performance, but also comparable in terms of
efficiency. Furthermore, it is several orders of magnitude faster than IL.
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Figure 1: Left: the computational graph of the function G(z1, z2) = (
√
z1 + z2)2. Right: its predictive coding

counterpart. Pointed upwards, the arrows related to the feedforward pass. Every internal vertex (red box) pictures the
function gi associated with it.

2 Preliminaries

A computational graph G = (V,E), where V is a finite nonempty set of vertices, and E is a finite set of edges, is a
directed acyclic graph (DAG), which represents a complex function as a composition of elementary functions. Every
vertex represents a computational step expressed by one of these elementary functions, and every edge pointing to this
vertex represents an input of this function. We now briefly recall BP on computational graphs, and introduce how to
perform PC on them. An example of a computational graph for the function G(z1, z2) = (

√
z1 + z2)2 is shown in

Fig. 1, where the arrows pointing upwards denote the forward pass, and the ones pointing downwards the reverse pass.
We call C(i) and P (i) the indices of the children and parents of vi, respectively. For ease of presentation, the direction
considered when using this notation will always be the reverse pass (downwards arrows in Fig. 1). Hence, input nodes
(nodes at the bottom) have no children vertices, and output node (nodes at the top) have no parent vertices. Furthermore,
we call vi the vertices of the graph G, and ei,j the directed edge that starts at vi and ends at vj . The first n vertices
v1, . . . , vn are the leafs of the graph and represent the n inputs of G, while the last vertex, vout, represents the output of
the function. We call di the minimum distance from the output node vout to vi (i.e., the minimum number of edges
separating vi and vout).

2.1 BP on Computational Graphs

Let G : Rn → R be a differentiable function, and {gi} be a factorization of G in elementary functions, which have to be
computed according to a computational graph. Particularly, a computational graph G = (V,E) associated with G is
formed by a set of vertices V with cardinality |V |, and a set of directed edges E, where an edge ei,j is the arrow that
points to vj starting from vi. With every vertex vi ∈ V , we associate an elementary function gi : Rki → R, where ki is
the number of edges pointing to vi. The choice of these functions is not unique, as there exist infinitely many ways
of factoring G. It hence defines the structure of a particular computational graph. Given an input vector z̄ ∈ Rn, we
denote by µi the value of the vertex vi during the forward pass. This value is computed iteratively as follows:

µi =

{
zi for i ≤ n ;

gi({µj}j∈C(i)) for i > n .
(1)

We then have G(z̄) = µ|V | = µout. The computational flow just described is represented by the red arrows in Fig. 1.
We now introduce the classical problem of reverse differentiation, and show how it is used to compute the derivative
relative to the output. Let z̄ = (z1, . . . , zn) be an input, and G(z̄) = µout be the output. Reverse differentiation
is a key technique in machine learning and artificial intelligence (AI), as it allows to compute ∂G

∂zi
for every i < n

efficiently. This is necessary to implement BP at a reasonable computational cost, especially considering the extremely
overparametrized architectures used today. This is done iteratively, according to the following equation:

∂G
∂µi

=
∑
j∈P (i)

∂G
∂µj
· ∂µj
∂µi

=
∑
j∈P (i)

∂G
∂µj
· ∂gj
∂µi

. (2)

To obtain the desired formula for the input variables, it suffices to recall that µi = zi for every i ≤ n.

Update of the leaf nodes: Given an input z̄, we consider a desired output y for the function G. The goal of a learning
algorithm is to update the input parameters (z1, . . . , zn) of a computational graph to minimize the quadratic loss

3



Figure 2: Left: a computational graph of an MLP; here, the weight parameters zi are the leaf nodes, and gi is the
product of the nodes below. Right: its PC counterpart; we have ignored the activations for simplicity.

E = 1
2 (µout − y)2. Hence, the input parameters are updated as follows:

∆zi = −α · ∂E
∂zi

= α ·
∑
j∈P (i)

δj
∂gj
∂zi

, (3)

where α is the learning rate, and ∂E
∂zi

is computed using reverse differentiation. We use the parameter δj to represent the
error signal, i.e., the propagation of the output error among the vertices of the graph. It can be computed according to
the following recursive formula:

δi =

{
µout − y if i = |V | ;∑
j∈P (i) δj

∂gj
∂zi

if n < i < |V |. (4)

2.2 IL on Computational Graphs

We now show how the forward and backward passes just introduced change when considering a PC computational
graph G = (V,E) of the same function G. We associate with every vertex vi, with i > n, a new time-dependent
random variable xi,t, called value node, and a prediction error εi,t. Given an input vector (ζ1, . . . , ζn), the values µi
are computed as follows: for the input vertices, we have µi,t = ζi and εi,t = 0 for i ≤ n, while for the other values, we
have

µi,t = gi({xj,t}j∈C(i)) and εi,t = µi,t − xi,t. (5)
This allows to compute the value µi,t of a vertex by only using information coming from vertices connected to vi. As in
the case of PCNs, every computation is strictly local. The value nodes of the network are updated continuously in order
to minimize the following loss function, defined on all the vertices of G:

Ft =

|V |∑
i=1

(µi,t − xi,t)2 =

|V |∑
i=1

(εi,t)
2. (6)

The output xout of G(ζ̄) is then computed by minimizing this energy function through an inference process. The update
rule is ∆xi,t = −γ ∂Ft

∂xi,t
, with γ ∈ R. Expanding this equation gives the following:

∆xi,t = −γ ∂Ft
∂xi,t

= γ(εi,t +
∑
j∈P (i)

εj,t
∂gj
∂xi,t

) . (7)

Note that during the forward pass, all the value nodes xi,t converge to µi, as t grows to infinity. This makes the final
output of the forward passes of inference learning on the new computational graph equivalent to that of the normal
computational graph.

Update of the leaf nodes: Let ζ̄ be an input vector, and y be a fixed target. To update the input vector and minimize
the error on the output, we fix xout = y. Thus, we have εout,t = µout − y. By fixing the value node xout,t, most of the
error nodes can no longer decay to zero. Hence, the error εout,t gets spread among the other error nodes on each vertex
of the computational graph by running the inference process. When the inference process has either converged, or it has
run for a fixed number of iterations T , the input vector gets updated by minimizing the same loss function Ft. Thus, we
have

∆ζi,t = −α ∂Ft
∂ζi,t

= α
∑
j∈P (i)

εj,t
∂gj
∂ζi,t

. (8)
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Algorithm 1 Learning one training pair (x, y) with Z-IL
Require: xout is fixed to y; x is fixed over time.
Require: xi,0 = µi,0 for every internal node, γ = 1.

1: for t = 0 to L do
2: for each neuron i in each layer l do
3: Update xi,t to minimize Ft via Eq. (7)
4: if t = l then
5: Update each ζl,t to minimize Ft via Eq. (8)
6: end if
7: end for
8: end for

Figure 3: Computational graphs of an ANN with a residual connection. On the right, a version with an identity vertex.

All computations are local (with local plasticity) in IL, and the model can autonomously switch between prediction and
learning via running inference. The main difference between BP and IL on computational graphs is that the update of
the parameters of BP is invariant of the structure of the computational graph, while IL depends on the choice of the
elementary functions {gi}.

2.3 Z-IL on MLPs

Recently, a new learning algorithm, called zero-divergence inference learning (Z-IL), was shown to perform exact
backpropagation on MLPs. More precisely, starting from a network with the same parameters, the update of the weights
after one iteration of BP is identical to the one given by one iteration of Z-IL. To be as close as possible to the original
formulation of Z-IL, we adopt the same notation of that work, and index the layers starting from the output layer (layer
0), and finishing at the input layer (layer L).

Let G(z̄) be the function expressed by an artificial neural network (ANN). The leaf vertices of its computational
graph are the weights, and every weight of a layer l has the distance l from the output vertex. An example of the
computational graph of a one-dimensional ANN, together with its PC counterpart, is given in Fig. 2. The figure for the
multidimensional case is equivalent, as it suffices to consider xi ∈ Rn and zi ∈ Rn×n.

This new algorithm differs from IL, as it sets the initial error εi,0 of every vertex vi to zero. This is done by performing
a forward pass and setting µi,0 = xi,0 for every vertex vi. Furthermore, its inference phase only lasts for L iterations.

Update of the leaf nodes: Z-IL introduces a new rule to update the weights of the MLP: the weight parameters of
layer l only get updated at time t = l. Particularly, every leaf node ζi in Fig. 2 gets updated at t = i. Note that this
condition needs to be rephrased, as computational graphs of general functions are usually not divided in layers. Hence,
a new formulation of Z-IL for computational graphs is given in Section 5. Z-IL’s pseudocode for MLP is given in
Algorithm 1, and its main theoretical result is as follows.
Theorem 1. Let M be a full connected PCN trained with Z-IL, and let M ′ be its corresponding MLP, initialized as M ,
and trained with BP. Then, given the same datapoint s to both networks, we have

∆z̄l = ∆ζ̄l (9)
for every layer l ≥ 0.

In the rest of this work, we generalize this result to the case where G(z̄) is a general function, and not only a MLP. In
the next section, we use residual connections to highlight the problem of applying Z-IL to general computational graphs.
We will then solve it by defining Z-IL for computational graphs, and prove a generalization of Theorem 1.
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3 The Problem of Skip Connections

In this section, we provide a toy example that shows how Z-IL and BP behave on the computational graph of an ANN
with a skip connection. Particularly, we show that it is impossible for Z-IL to replicate the same update of BP on all the
parameters, unless the structure of the computational graph is altered. Let us consider the network expressed in Fig. 3,
which corresponds to the function G(x, z) = z3(z1z2 + 1)x.

BP: Given an input value x and a desired target y, BP computes the gradient of every leaf node using reverse
differentiation, and updates the parameters of z3 as follows:

∆z3 = −α · ∂E
∂z3

= α · δ(z1z2 + 1)x, (10)

where δ = (µout − y), and E is the quadratic loss defined on the output node.

Z-IL: Given an input value x and a desired target y, the inference phase propagates the output error through the graph
via Eq. (8). Z-IL updates ζ3 at t = 3, as it belongs to the third hidden layer. This leads to the following:

∆ζ3 = −α · ∂F3

∂ζ3
= α · δζ1ζ2x, (11)

where δ = εout,0 = (µout,0 − y), and F2 is computed according to Eq. (6). Note that this update is different from the
one obtained by BP. We now analyze the reason of this mismatch and provide a solution.

3.1 Identity Vertices

The error signal propagated by the inference process reaches ζ3 in two different moments: t = 2 from the output
vertex, and t = 3 from g2. Dealing with vertices that receive error signals in different moments is problematic for our
formulation of the Z-IL algorithm, as every leaf node only gets updated once. Furthermore, changing the update rule
of Z-IL does not solve the problem, as no other combination of updates produces the same weight update defined in
Eq. (10). To solve this problem, we then have to assure that every node of the graph is reached by the error signal in a
single time step. This result is trivially obtained on computational graphs that are levelled DAGs, i.e., graphs where
every directed path connecting two vertices has the same length.

For every vertex vi, it is possible to write the associated elementary function gi as a composition with the identity
function, i.e., gi ◦ Id. Given two vertices vi, vj connected by the edge ei,j , it is then possible to add a new vertex vk by
splitting the edge ei,j into ei,k, ek,j , whose associated function gk is the identity. This leaves the function expressed by
the computational graph unvaried, as well as the computation of the derivatives, the forward pass, and the backward
pass of BP. Adding these identity vertices in the right places, makes the computational graph levelled, allowing every
vertex to receive the error signals at the same time step. Consider now the levelled graph of Fig. 3, where an identity
node has been added in the skip connection. The error signal of both g1 and gout reaches g2 simultaneously at t = 2.
Hence, at t = 3, Z-IL updates ζ3 as follows:

∆ζ3 = −α · ∂F3

∂ζ3
= α · δ(ζ1ζ2 + 1)x. (12)

If we have ζi = zi, this weight update is equivalent to the one performed by BP and expressed in Eq. (10). Hence,
we have shown that Z-IL is able to produce the same weight update of BP in a simple neural network with one skip
connection, thanks to adding an identity vertex. In the next section, we generalize this result.

4 Levelled Computational Graphs

In this section, we show that, given any computational graph, it is always possible to generate a levelled equivalent.
Particularly, we provide an algorithm that performs this task by adding identity nodes. This leads to the first result
needed to prove our main theorem: Every function admits a computational graph with a level structure, where a level
structure of a directed graph is a partition of the vertices into subsets that have the same distance from the top vertex.

Let G = (V,E) be a computational graph, and let S1, . . . , SK be the family of subsets of V defined as follows: a
vertex vi is contained in Sk if there exists a directed path of length k connecting vi to vout, i.e.,

Sk = {vi ∈ V | ∃ a path (eout,j1 , . . . , ejk−1,i)} . (13)

Hence, we have that vout is contained in S0, its children vertices in S1, and so on. In a levelled graph, every vertex is
contained in one and only one of the subsets. Denote by Di the maximum distance between vout and the parent nodes

6



Figure 4: Computational graphs of the same function G. Left: the original graph G; right: the transformed graph, with
the identity vertices in green.

Algorithm 2 Generating a levelled DAG G′ from G

Require: G is a DAG, and (v0, . . . , vn) a topological sort.
1: for every j in (0, n) included do
2: for each vertex vi in P (j) do
3: Add (dj −Di) identity vertices to ei,j
4: end for
5: end for

of vi, i.e., Di = maxvj∈P (i) dj . We now show for every DAG G how to make every vertex vi to be contained in only
one subset Sk, without altering the dynamics of the computation graph. This is done by adding identity nodes in the
graph.

Let G be a DAG with root v0, and let (v0, v1, . . . , vn) be a topological sort of the vertices of G. Starting from the root,
for every vertex vj , we replace every existing edge ei,j with the following path:

vi → Id→ · · · → Id→ vj , (14)

which connects vi to vj via dj −Di identity nodes. When this process has been repeated on all the vertices, we obtain
a levelled DAG. To use the introduced notation, this is equivalent to having every vi ∈ G that belongs to one and only
one subset Sk. This follows because every pair of disconnected paths between two vertices is forced to have the same
length, due to the addition of identity vertices. Hence, we have the following.

Theorem 2. Given a function G : Rn → R and any factorization of it expressed by elementary functions {gi}, there
exist a levelled computational graph G = (V,E) that represents this factorization.

Under the machine learning perspective, this theorem shows that every neural network can be expressed as a levelled
computational graph when needed, thanks to the addition of identity nodes. Hence, every result shown for levelled
computational graphs can be naturally extended to every possible neural network structure. This is the case for the
result of the next section, which states that Z-IL allows PCNs to do exact BP on every possible neural network.

5 Z-IL for Levelled Computational Graphs

Let G= (V,E) be the levelled computational graph of a function G : Rn → R, and consider the partition of V via its
level structure S1, . . . , SK . As in the original formulation of Z-IL, we present two variants of IL that allow predictive
coding to exactly replicate the parameter update of BP.

Variant 1: Instead of continuously running the inference on all the leaf nodes of G, we only run it on the internal
vertices. Then, at every time step t, we update all the leaf nodes vi ∈ St. Particularly, for every internal vertex vi,
training continues as usual via Eq. 7. On the other hand, leaf nodes are updated according to the folllowing equation:

∆ζi,t =

{
α ·
∑
j∈P (i) εj,t

∂gj
∂ζi

. if vi ∈ St
0 if vi 6∈ St.

(15)
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Algorithm 3 Z-IL for computational graphs.
Require: xout is fixed to a label y,
Require: {Sk}k=0,...,K is a level structure of G(V,E);
Require: xi,0 = µi,0 for every internal node.

1: for t = 0 to K do
2: for each internal vertex vi do
3: Update xi,t to minimize Ft via Eq. (7)
4: if t = k then
5: Update each leaf node ζi,t ∈ Sk to minimize Ft via Eq. (8)
6: end if
7: end for
8: end for

Table 2: Average running time of each weights update (in ms) of BP, IL [34], and Z-IL for computational graphs.

Training Method MLP AlexNet [27] Many-to-one RNN ResNet18 [18] Transformer Net [53]

BP 3.72 8.61 5.64 12.43 20.43
IL 594.25 661.53 420.01 1452.34 1842.64

Z-IL 3.81 8.86 5.67 12.53 20.53

This shows that one full update of the parameters requires t = K steps. Note that, in the case of multilayer networks,
K is equal to the number of layers L.

Variant 2: Differently from IL, where the input parameters and the output are presented simultaneously, Z-IL first
presents the input vector to the function, and computes a forward pass. Then, once the values µi of all the internal
vertices have been computed, their value nodes are initialized to have zero error, i.e., xi,0 =µi, and the output node is
set equal to the label y. This is done to emulate the behaviour of BP, which first computes the output vector, and then
compares it to the label.

Overall, the functioning of Z-IL for computational graphs is summarized in Algorithm 3. We now show that this new
formulation of Z-IL is able to replicate the same weight update of BP on any function G.
Theorem 3. Let (z̄, y) and (ζ̄, y) be two points with the same label y, and G : Rn → R be a function. Assume that the
update ∆z̄ is computed using BP, and the update ∆ζ̄ using Z-IL with γ = 1. Then, if z̄ = ζ̄ , and we consider a levelled
computational graph of G, we have

∆zi = ∆ζi (16)
for every i ≤ n.

This proves the main claims made about Z-IL: (i) exact BP and exact reverse differentiation can be made biologically
plausible on the computational graph of any function, and (ii) Z-IL is a learning algorithm that allows PCNs to perfectly
replicate the dynamics of BP on any function.

6 Experiments

In the above sections, we have theoretically proved that the proposed generalized version of Z-IL is exactly equivalent
to BP on every related neural networks, and the results of our experiments have further confirmed this: the divergences
of weight updating between BP and Z-IL are always zero on all tested neural networks. So there is no need for detailed
experimental evaluation for the equivalence. In this section, we will complete the picture of this work with experimental
studies to evaluate the computational efficiency of Z-IL, and quantitatively compare it with those of BP and IL.

All experiments are conducted on two Nvidia GeForce GTX 1080Ti GPUs and eight Intel Core i7 CPUs, with 32 GB
RAM. Table 2 shows the average running time of each weights update of BP, IL, and Z-IL, on the following five neural
networks. All dependencies and their versions are specified in the supplementary material.

MLP: We trained three MLPs with different depth (2, 3, and 4 layers, respectively) on FashionMNIST, and the
dimension of each layer is 128 neurons. The batch size and learning rate are 20 and 0.01, respectively. The results of
BP and Z-IL are averaged numbers over the three architectures.

AlexNet and ResNet: AlexNet [27] and ResNet18 [18] are trained on ImageNet. The batch size and learning rate are
the same as for the MLPs.
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RNNs: We trained a reinforcement learning agent on a single-layer many-to-one RNN on eight different Atari games.
Similarly, the size of hidden and output layers is 128, batch size and learning rate are 20 and 0.01, respectively, and the
reported results are averaged over eight games.

Transformer: We trained a 1-layer transformer architecture using torchtext to generate a Wikitext-2 dataset. Batch
size and learning rate are 4 and 0.01, respectively.

6.1 Results and Evaluations

As shown in Table 2, the computational time costs of Z-IL is very close to that of BP, and is several orders of magnitude
lower than that of IL. Consequently, this proves that Z-IL is an efficient alternative to BP in practice, instead of just
being a theoretical tool.

The high computational time costs of IL is due to the following. Theoretically, IL has to wait for the error to be
converged before updating weights once. Since the convergence of the error may take a huge number of iterations,
in practice, a fixed number T is usually used as the number of iterations that IL needs for every weight update. For
example, for small MLPs, T is set to 20 in [58], and as larger models require higher numbers of iterations for the error
to converge, T is set between 100 and 200 for mid-size architectures, such as RNNs and CNNs in [34]. For a fair
comparison, the values of T in our experiments follow the settings in [34]. Furthermore, although Z-IL also requires
L inference steps to complete one update of weights in all layers, L in Z-IL is set to be the number of layers of the
corresponding network, whose value is usually much smaller than that of T in IL, i.e., T >>L. Consequently, IL
requires much more steps of inference than Z-IL for each weight update, resulting in a significantly higher running time
than Z-IL.

Furthermore, an interesting aspect to notice is that both [58] and [34] never verified that the inference indeed has
converged in their IL models, though it is the most important theoretical requirement for IL to approximate BP. However,
their models still perform comparably to BP in terms of testing accuracy. Moreover, the reasonable approximation
in [58] is achieved with a quite small T = 20. Actually, the proposed Z-IL explains the above findings, as we show
that strict equivalence can be achieved with a small number of inference steps; one just needs to satisfy the proposed
conditions properly.

7 Related Work

PC is an influential theory of cortical function in theoretical and computational neuroscience. It has appealing theoretical
interpretations, such as free-energy minimization [10, 15, 16, 59] and variational inference of probabilistic models [58].
It offers a single mechanism that accounts for diverse perceptual phenomena observed in the brain, such as end-
stopping [41], repetition-suppression [5], illusory motions [33, 55], bistable perception [20, 56], and even attentional
modulation of neural activity [14, 23]. There are also variants of PC developed into different biologically plausible
process theories specifying cortical microcircuits that potentially implement such theories [8, 23, 48, 52]. Due to
this solid biological grounding, PC is also attracting interest in the machine learning community recently, especially
focusing on finding the links between PC and BP [58, 34].

Biologically plausible approximations to BP have been intensively studied since the flourishing of BP, because on the
one hand, the underlying principles of BP are unrealistic for an implementation in the brain [17, 12, 1, 30, 42, 59], but
on the other hand, BP outperforms all alternative discovered frameworks [6] and closely reproduces activity patterns
observed in the cortex [64, 31, 11, 63, 25, 62, 24, 7, 57]. However, earlier biologically plausible approximations to
BP were not scaling to larger and more complicated problems [30, 38, 26, 9, 28, 35, 46, 47, 32, 22]. More recent
works show the capacity of scaling up biologically plausible approximations to the level of BP [60, 37, 36, 4, 3, 2, 54].
However, to date, none of the earlier or recent models has bridged the gaps at a degree of demonstrating an equivalence
to BP, though some of them [28, 58, 36, 40, 39, 34] demonstrate that they approximate BP, or are equivalent to BP
under unrealistic restrictions, e.g., the feedback is sufficiently weak [61, 58, 44].

8 Conclusion

In this paper, we have extended the use of the Z-IL algorithm to all possible neural networks. While IL approximates BP
in single-step weight updates under unrealistic and non-trivial requirements, the proposed generalized version of Z-IL is
proved to be always equivalent to BP, with no extra restriction on the mapping function and the type of neural networks.
Furthermore, experimental studies have been conducted to show that the computational efficiency of Z-IL is comparable
to that of BP, and is several orders of magnitude better than IL. This demonstrates that Z-IL is very suitable for practical
applications, as it can be implemented for any large and state-of-the-art neural network, with a time efficiency that is
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similar to BP. This significantly strengthens the link between PC and BP, which is an important finding for both the
deep learning and the neuroscience community. Specifically, it suggests that (i) PC and IL are interesting directions to
explore in the research of deep learning, and (ii) that some form of BP may indeed be performed in the brain. Our work
could also indicate that BP happens in the brain as just one part of the learning process, since Z-IL can be seen as a
specific moment during the training of PC with IL; thus, there may be something missing apart from BP. Hence, BP
may be more important in neuroscience than commonly thought.

Acknowledgments

This work was supported by the China Scholarship Council under the State Scholarship Fund, by the National Natural
Science Foundation of China under the grant 61906063, by the Natural Science Foundation of Tianjin City, China,
under the grant 19JCQNJC00400, by the “100 Talents Plan” of Hebei Province, China, under the grant E2019050017,
and by the Medical Research Council UK grant MC UU 00003/1. This work was also supported by the Alan Turing
Institute under the EPSRC grant EP/N510129/1 and by the AXA Research Fund.

References

[1] M. Abdelghani, T. P. Lillicrap, and D. B. Tweed. Sensitivity derivatives for flexible sensorimotor learning. Neural
Computation, 20(8):2085–2111, 2008.

[2] M. Akrout, C. Wilson, P. C. Humphreys, T. Lillicrap, and D. Tweed. Using weight mirrors to improve feedback
alignment. arXiv:1904.05391, 2019.

[3] J. Aljadeff, J. D’amour, R. E. Field, R. C. Froemke, and C. Clopath. Cortical credit assignment by Hebbian,
neuromodulatory and inhibitory plasticity. arXiv:1911.00307, 2019.

[4] Y. Amit. Deep learning with asymmetric connections and Hebbian updates. Frontiers in Computational Neuro-
science, 13:18, 2019.

[5] R. Auksztulewicz and K. Friston. Repetition suppression and its contextual determinants in predictive coding.
Cortex, 80, 2016.

[6] P. Baldi and P. Sadowski. A theory of local learning, the learning channel, and the optimality of backpropagation.
Neural Networks, 83, 2016.

[7] A. Banino, C. Barry, B. Uria, C. Blundell, T. Lillicrap, P. Mirowski, A. Pritzel, M. J. Chadwick, T. Degris,
J. Modayil, et al. Vector-based navigation using grid-like representations in artificial agents. Nature, 557, 2018.

[8] A. M. Bastos, W. M. Usrey, R. A. Adams, G. R. Mangun, P. Fries, and K. J. Friston. Canonical microcircuits for
predictive coding. Neuron, 76(4):695–711, 2012.

[9] Y. Bengio. How auto-encoders could provide credit assignment in deep networks via target propagation.
arXiv:1407.7906, 2014.

[10] R. Bogacz. A tutorial on the free-energy framework for modelling perception and learning. Journal of Mathemati-
cal Psychology, 76:198–211, 2017.

[11] C. F. Cadieu, H. Hong, D. L. Yamins, N. Pinto, D. Ardila, E. A. Solomon, N. J. Majaj, and J. J. DiCarlo. Deep
neural networks rival the representation of primate it cortex for core visual object recognition. PLoS Computational
Biology, 10(12), 2014.

[12] F. Crick. The recent excitement about neural networks. Nature, 337(6203):129–132, 1989.
[13] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional transformers for

language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics. Association for Computational Linguistics, 2019.

[14] H. Feldman and K. Friston. Attention, uncertainty, and free-energy. Frontiers in Human Neuroscience, 4, 2010.
[15] K. Friston. Learning and inference in the brain. Neural Networks, 16(9):1325–1352, 2003.
[16] K. Friston. A theory of cortical responses. Philosophical Transactions of the Royal Society B: Biological Sciences,

360(1456), 2005.
[17] S. Grossberg. Competitive learning: From interactive activation to adaptive resonance. Cognitive Science,

11(1):23–63, 1987.
[18] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2016.

10



[19] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9, 1997.

[20] J. Hohwy, A. Roepstorff, and K. Friston. Predictive coding explains binocular rivalry: An epistemological review.
Cognition, 108(3), 2008.

[21] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approximators. Neural
Networks, 2, 1989.

[22] B. Illing, W. Gerstner, and J. Brea. Biologically plausible deep learning—but how far can we go with shallow
networks? Neural Networks, 118, 2019.

[23] R. Kanai, Y. Komura, S. Shipp, and K. Friston. Cerebral hierarchies: Predictive processing, precision and the
pulvinar. Philosophical Transactions of the Royal Society B: Biological Sciences, 370, 2015.

[24] A. J. Kell, D. L. Yamins, E. N. Shook, S. V. Norman-Haignere, and J. H. McDermott. A task-optimized neural
network replicates human auditory behavior, predicts brain responses, and reveals a cortical processing hierarchy.
Neuron, 98, 2018.

[25] S.-M. Khaligh-Razavi and N. Kriegeskorte. Deep supervised, but not unsupervised, models may explain it cortical
representation. PLoS Computational Biology, 10(11), 2014.

[26] K. P. Körding and P. König. Supervised and unsupervised learning with two sites of synaptic integration. Journal
of Computational Neuroscience, 11(3):207–215, 2001.

[27] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks.
In 26th Annual Conference on Neural Information Processing Systems (NIPS) 2012, 2012.

[28] D.-H. Lee, S. Zhang, A. Fischer, and Y. Bengio. Difference target propagation. In Proc. ECMLPKDD, 2015.

[29] T. Lillicrap, A. Santoro, L. Marris, C. Akerman, and G. Hinton. Backpropagation and the brain. Nature Reviews
Neuroscience, 21, 04 2020.

[30] T. P. Lillicrap, D. Cownden, D. B. Tweed, and C. J. Akerman. Random synaptic feedback weights support error
backpropagation for deep learning. Nature Communications, 7(1):1–10, 2016.

[31] T. P. Lillicrap and S. H. Scott. Preference distributions of primary motor cortex neurons reflect control solutions
optimized for limb biomechanics. Neuron, 77(1), 2013.

[32] T.-H. Lin and P. T. P. Tang. Dictionary learning by dynamical neural networks. arXiv:1805.08952, 2018.

[33] W. Lotter, G. Kreiman, and D. Cox. Deep predictive coding networks for video prediction and unsupervised
learning. arXiv:1605.08104, 2016.

[34] B. Millidge, A. Tschantz, and C. L. Buckley. Predictive coding approximates backprop along arbitrary computation
graphs. arXiv:2006.04182, 2020.

[35] A. Nøkland. Direct feedback alignment provides learning in deep neural networks. In Advances in Neural
Information Processing Systems, 2016.

[36] A. Nøkland and L. H. Eidnes. Training neural networks with local error signals. arXiv:1901.06656, 2019.

[37] D. Obeid, H. Ramambason, and C. Pehlevan. Structured and deep similarity matching via structured and deep
Hebbian networks. In Advances in Neural Information Processing Systems, 2019.

[38] R. C. O’Reilly. Biologically plausible error-driven learning using local activation differences: The generalized
recirculation algorithm. Neural Computation, 8(5):895–938, 1996.

[39] A. G. Ororbia and A. Mali. Biologically motivated algorithms for propagating local target representations. In
Proc. AAAI, volume 33, pages 4651–4658, 2019.

[40] I. Ororbia, G. Alexander, P. Haffner, D. Reitter, and C. L. Giles. Learning to adapt by minimizing discrepancy.
arXiv:1711.11542, 2017.

[41] R. P. Rao and D. H. Ballard. Predictive coding in the visual cortex: A functional interpretation of some extra-
classical receptive-field effects. Nature Neuroscience, 2(1):79–87, 1999.

[42] P. R. Roelfsema and A. Holtmaat. Control of synaptic plasticity in deep cortical networks. Nature Reviews
Neuroscience, 19(3):166, 2018.

[43] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating errors. Nature,
323(6088):533–536, 1986.

[44] J. Sacramento, R. P. Costa, Y. Bengio, and W. Senn. Dendritic cortical microcircuits approximate the backpropa-
gation algorithm. In Advances in Neural Information Processing Systems, pages 8721–8732, 2018.

11



[45] T. Salvatori, Y. Song, T. Lukasiewicz, Z. Xu, and R. Bogacz. Predictive coding can do exact backpropagation on
convolutional and recurrent neural networks. arXiv:2103.03725, 2021.

[46] B. Scellier and Y. Bengio. Equilibrium propagation: Bridging the gap between energy-based models and
backpropagation. Frontiers in Computational Neuroscience, 11:24, 2017.

[47] B. Scellier, A. Goyal, J. Binas, T. Mesnard, and Y. Bengio. Generalization of equilibrium propagation to vector
field dynamics. arXiv:1808.04873, 2018.

[48] S. Shipp. Neural elements for predictive coding. Frontiers in Psychology, 7:1792, 2016.
[49] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou,

V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap,
M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering the game of Go with deep neural networks
and tree search. Nature, 529, 2016.

[50] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton,
Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and D. Hassabis. Mastering the game of
Go without human knowledge. Nature, 550, 2017.

[51] Y. Song, T. Lukasiewicz, Z. Xu, and R. Bogacz. Can the brain do backpropagation? — Exact implementation
of backpropagation in predictive coding networks. In Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, 2020.

[52] M. W. Spratling. Reconciling predictive coding and biased competition models of cortical function. Frontiers in
Computational Neuroscience, 2:4, 2008.

[53] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention
is all you need. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems, 2017.

[54] X. Wang, X. Lin, and X. Dang. Supervised learning in spiking neural networks: A review of algorithms and
evaluations. Neural Networks, 2020.

[55] E. Watanabe, A. Kitaoka, K. Sakamoto, M. Yasugi, and K. Tanaka. Illusory motion reproduced by deep neural
networks trained for prediction. Frontiers in Psychology, 9:345, 2018.

[56] V. Weilnhammer, H. Stuke, G. Hesselmann, P. Sterzer, and K. Schmack. A predictive coding account of bistable
perception-a model-based fmri study. PLoS Computational Biology, 13(5), 2017.

[57] J. Whittington, T. Muller, S. Mark, C. Barry, and T. Behrens. Generalisation of structural knowledge in the
hippocampal-entorhinal system. In Advances in Neural Information Processing Systems, 2018.

[58] J. C. Whittington and R. Bogacz. An approximation of the error backpropagation algorithm in a predictive coding
network with local Hebbian synaptic plasticity. Neural Computation, 29(5), 2017.

[59] J. C. Whittington and R. Bogacz. Theories of error back-propagation in the brain. Trends in Cognitive Sciences,
2019.

[60] W. Xiao, H. Chen, Q. Liao, and T. Poggio. Biologically-plausible learning algorithms can scale to large datasets.
arXiv:1811.03567, 2018.

[61] X. Xie and H. S. Seung. Equivalence of backpropagation and contrastive Hebbian learning in a layered network.
Neural Computation, 15(2), 2003.

[62] D. L. Yamins and J. J. DiCarlo. Using goal-driven deep learning models to understand sensory cortex. Nature
Neuroscience, 19(3), 2016.

[63] D. L. Yamins, H. Hong, C. F. Cadieu, E. A. Solomon, D. Seibert, and J. J. DiCarlo. Performance-optimized
hierarchical models predict neural responses in higher visual cortex. Proceedings of the National Academy of
Sciences, 111(23), 2014.

[64] D. Zipser and R. A. Andersen. A back-propagation programmed network that simulates response properties of a
subset of posterior parietal neurons. Nature, 331(6158), 1988.

12



A Proof of Theorem 2

In this section, we prove the main theorem of our work, which has already been stated in Section 5 of the main body.
Theorem 4. Let (z̄, y) and (ζ̄, y) be two points with the same label y, and G : Rn → R be a function. Assume that the
update ∆z̄ is computed using BP, and the update ∆ζ̄ uses Z-IL with γ = 1. Then, if z̄ = ζ̄, and we consider a levelled
computational graph of G, we have

∆zi = ∆ζi, (17)
for every i ≤ n.

Proof. As Z-IL acts on the levelled version of G, in this proof we consider levelled computational graphs, i.e., graphs
where the distance from the top generates a partition of the vertices. We denote di the distance of a vertex vi to the root
vertex vout, i.e., di = k if vi ∈ Sk. Furthermore, we denote by dmax the maximum distance between the root and any
vertex vi, i.e., dmax = maxi di.

We now divide the proof in two parts, which we call Claim 1 and Claim 2. The first part of the proof (i.e., Claim 1)
consists in showing that the errors δi and εi,t are equal when vi ∈ Sk and t = k, which is the time at which the input
parameters get updated. Particularly:

Claim 1: At any fixed time t, we have εi,t = δi for every vi ∈ St.
We prove this claim by induction on dmax. Let us start with the basic step dmax = 1:

We have the output vertex vout and leaf vertices. The value µout,t of the output node is given by the elementary function
gout defined on all the input variables. Hence, we have

δi = εi,0 = µout,t − y. (18)
This proves the basic case. Now we move to the induction step: let us assume that Claim 1 holds for every computation
graph with where dmax = m.

Let G : Rn → R be a function whose computation graph G(V,E) has dmax = m+ 1. For every non-leaf node vi such
that di < m and vi ∈ St, we have that δi = εi,t. Furthermore, note that εi,t = εi,di .

εi,di =
∑
j∈P (i)

εj,di−1
∂µj,di
∂xi,0

by Lemma A.1,

δi =
∑
j∈P (i)

δj
∂µj
∂µi

by Eq. (4).

The two quantities above are equal. This follows from the induction step, which gives εj,di−1 = δi and from the
condition that states that µi,t = xi,0 for d < di. This concludes the proof of Claim 1.

Claim 2: We have ∆zi = ∆ζi for every i ≤ n.

Eqs. (3) and (8) state the following:

∆zi = α ·
∑
j∈P (i)

δj
∂µj
∂zi

,

∆ζi = α
∑
j∈P (i)

εj,t
∂µj,t
∂ζi

.

The update of every input parameter ζi in Z-IL happens at t = di. Claim 1 shows that, at that specific time, we have
δi = εi,t, while Lemma A.2 states that µi,t = µi,0 for every t ≤ di. The proof of the claim, and hence, the whole
theorem, follows from ζi = zi for every i ≤ n.

Lemma A.1. Let ζ̄ be an input of a continuous and differentiable function G : Rn → R with computational graph
G(V,E), and also assume that the update ∆ζ̄ using Z-IL with the partition of V described by Eq. (13), we then have
µi,t = µi,0 and εi,t = 0 for every t ≤ di.

Proof. This directly follows from the fact that we are applying Z-IL on a levelled graph. In fact, the value µi,di of every
vertex vi differs from its initial state µi,0 only if the node values {xj,t}j∈C(i) of the children vertices have changed
in the time interval [0, di]. This may only happen if we have dj < di for one of the vertices {vj}j∈C(i). But this is
impossible, as the distance from the top di of a parent node is always strictly smaller than the one of any of its children
nodes in a levelled graph.
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Lemma A.2. The prediction error in Z-IL at t = di, i.e., εi,t, can be derived from itself at previous inference moments.
Formally,

εi,di = γ
∑
j∈P (i)

εj,di−1
∂µj,di
∂xi,0

. (19)

Proof. Let us write εi,t as a function of εi,t−1:

εi,t = εi,t−1 + (∆xi,t−1 −∆µi,t−1) , (20)

where ∆µi,t−1 = µi,t − µi,t−1. Then, we expand εi,di with the above equation and simplify it with Lemma A.1, i.e.,
εi,di−1 = 0 and ∆µi,t<di−1 = 0:

εi,di = εi,di−1 + (∆xi,di−1 −∆µi,di−1) = ∆xi,di−1. (21)

We further investigate ∆xi,di−1 expanded with the inference dynamic Eq. (7) and simplify it with Lemma A.1, i.e.,
εi,t<di = 0,

∆xi,di−1 = γ(εi,di−1 +
∑
j∈P (i)εj,di−1

∂µj
∂xi,di−1

) (22)

= γ
∑
j∈P (i)εj,di−1

∂µj
∂xi,di−1

. (23)

Putting Eq. (23) into Eq. (21), we obtain:

εi,di = γ
∑
j∈P (i)

εj,di−1
∂µj,di
∂xi,di−1

(24)

= γ
∑
j∈P (i)

εj,di−1
∂µj,di
∂xi,0

. (25)

With Lemma A.1, xi,di−1 can be replaced with xi,0.

B Empirical Validation of the Theorems

Table 3: Euclidean distance of the weights after one training step of Z-IL (and variations), and BP.

Model Z-IL Z-IL without Layer-dependent Update Z-IL with εli,0 6= 0 Z-IL with γ = 0.5

ANN 0 1.42× 102 7.22 8.67× 104

RNN 0 6.05× 103 9.60 6.91× 105

CNN 0 5.93× 105 7.93× 102 9.87× 108

ResNet 0 9.43× 107 4.53× 105 6.44× 109

Transformer 0 1.12× 1011 3.41× 106 8.63× 1016

To empirically validate the results of our theorems, we show that all the conditions of Z-IL are needed to obtain exact
backpropagation. Particularly, by starting from the same weight initialization, we have conducted one training step of
the following five different learning algorithms: (i) BP, (ii) Z-IL, (iii) Z-IL without level-dependent update, (iv) Z-IL
with εli,0 6= 0, and (v) Z-IL with γ = 0.5. Note that the last three algorithms are the variations of Z-IL obtained ablating
each one of the initial conditions.

After conducting one training step of each algorithm, we have computed the Euclidean distance between the weights
obtained by one of the algorithms (ii)-(v), and the ones obtained by BP. The results of these experiments, reported in
Table 3, show that all the three conditions of Z-IL are necessary in order to achieve zero divergence with BP. To provide
full evidence of the validation of our theoretical results, we have conducted this experiment using ANNs, CNNs, RNNs,
ResNets, and Transformer networks. Further details about the experiments can be found in the section below, although
they are similar to the ones shown in the main body.
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C Reproducibility of the Experiments

In this section, we provide the details of all the experiments shown in Section 5 and B.

ANNs: To perform our experiments with fully connected networks, we have trained three architectures with different
depth on FashionMNIST. Particularly, these networks have a hidden dimension of 128 neurons, and 2, 3, and 4 layers,
respectively. We have used a batch of 20 training points, and a learning rate of 0.01. The numbers reported for the
experiments are the averages over the three architectures.

CNNs: For our experiments on CNNs, we have used AlexNet trained on both FashionMNIST and ImageNet. As above,
we have used a batch of 20 training points, a learning rate of 0.01, and reported the average of the experiments over the
two datasets.

RNNs: We have trained a reinforcement learning agent on a single-layer many-to-one RNN, with n = nout = 128, on
eight different Atari games. Batch size and learning rate are 32 and 0.001, respectively. Again, the reported results are
the average of all the experiments performed on this architecture.

ResNets: We have used a 5-layers fully connected network with 256 hidden neurons per layer. The residual connections
are defined at every layer. Particularly, we have defined it in a way that allows its computational graph to be levelled.

Transformer: We have used a single-layer transformed architecture, trained on randomly generated data.

All experiments are conducted on 2 Nvidia GeForce GTX 1080Ti GPUs and 8 Intel Core i7 CPUs, with 32 GB RAM.
Furthermore, to avoid rounding errors, we have initialized the weights in float32, and then transformed them in float64,
and all later computations are in float64.
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